Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Targeting NRF2 for the Treatment of Friedreich's Ataxia: A Comparison among Drugs.

Identifieur interne : 000201 ( Main/Exploration ); précédent : 000200; suivant : 000202

Targeting NRF2 for the Treatment of Friedreich's Ataxia: A Comparison among Drugs.

Auteurs : Sara Petrillo [Italie] ; Jessica D'Amico [Italie] ; Piergiorgio La Rosa [Italie] ; Enrico Silvio Bertini [Italie] ; Fiorella Piemonte [Italie]

Source :

RBID : pubmed:31640150

Descripteurs français

English descriptors

Abstract

NRF2 (Nuclear factor Erythroid 2-related Factor 2) signaling is impaired in Friedreich's Ataxia (FRDA), an autosomal recessive disease characterized by progressive nervous system damage and degeneration of nerve fibers in the spinal cord and peripheral nerves. The loss of frataxin in patients results in iron sulfur cluster deficiency and iron accumulation in the mitochondria, making FRDA a fatal and debilitating condition. There are no currently approved therapies for the treatment of FRDA and molecules able to activate NRF2 have the potential to induce clinical benefits in patients. In this study, we compared the efficacy of six redox-active drugs, some already adopted in clinical trials, targeting NRF2 activation and frataxin expression in fibroblasts obtained from skin biopsies of FRDA patients. All of these drugs consistently increased NRF2 expression, but differential profiles of NRF2 downstream genes were activated. The Sulforaphane and N-acetylcysteine were particularly effective on genes involved in preventing inflammation and maintaining glutathione homeostasis, the dimethyl fumarate, omaxevolone, and EPI-743 in counteracting toxic products accumulation, the idebenone in mitochondrial protection. This study may contribute to develop synergic therapies, based on a combination of treatment molecules.

DOI: 10.3390/ijms20205211
PubMed: 31640150
PubMed Central: PMC6829337


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Targeting NRF2 for the Treatment of Friedreich's Ataxia: A Comparison among Drugs.</title>
<author>
<name sortKey="Petrillo, Sara" sort="Petrillo, Sara" uniqKey="Petrillo S" first="Sara" last="Petrillo">Sara Petrillo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. sara.petrillo@opbg.net.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="D Amico, Jessica" sort="D Amico, Jessica" uniqKey="D Amico J" first="Jessica" last="D'Amico">Jessica D'Amico</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. jessica.damico@opbg.net.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="La Rosa, Piergiorgio" sort="La Rosa, Piergiorgio" uniqKey="La Rosa P" first="Piergiorgio" last="La Rosa">Piergiorgio La Rosa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. piergiorgio.larosa@opbg.net.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bertini, Enrico Silvio" sort="Bertini, Enrico Silvio" uniqKey="Bertini E" first="Enrico Silvio" last="Bertini">Enrico Silvio Bertini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. enricosilvio.bertini@opbg.net.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Piemonte, Fiorella" sort="Piemonte, Fiorella" uniqKey="Piemonte F" first="Fiorella" last="Piemonte">Fiorella Piemonte</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. fiorella.piemonte@opbg.net.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31640150</idno>
<idno type="pmid">31640150</idno>
<idno type="doi">10.3390/ijms20205211</idno>
<idno type="pmc">PMC6829337</idno>
<idno type="wicri:Area/Main/Corpus">000211</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000211</idno>
<idno type="wicri:Area/Main/Curation">000211</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000211</idno>
<idno type="wicri:Area/Main/Exploration">000211</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Targeting NRF2 for the Treatment of Friedreich's Ataxia: A Comparison among Drugs.</title>
<author>
<name sortKey="Petrillo, Sara" sort="Petrillo, Sara" uniqKey="Petrillo S" first="Sara" last="Petrillo">Sara Petrillo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. sara.petrillo@opbg.net.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="D Amico, Jessica" sort="D Amico, Jessica" uniqKey="D Amico J" first="Jessica" last="D'Amico">Jessica D'Amico</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. jessica.damico@opbg.net.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="La Rosa, Piergiorgio" sort="La Rosa, Piergiorgio" uniqKey="La Rosa P" first="Piergiorgio" last="La Rosa">Piergiorgio La Rosa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. piergiorgio.larosa@opbg.net.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bertini, Enrico Silvio" sort="Bertini, Enrico Silvio" uniqKey="Bertini E" first="Enrico Silvio" last="Bertini">Enrico Silvio Bertini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. enricosilvio.bertini@opbg.net.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Piemonte, Fiorella" sort="Piemonte, Fiorella" uniqKey="Piemonte F" first="Fiorella" last="Piemonte">Fiorella Piemonte</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. fiorella.piemonte@opbg.net.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylcysteine (pharmacology)</term>
<term>Biopsy (MeSH)</term>
<term>Down-Regulation (drug effects)</term>
<term>Drug Evaluation, Preclinical (MeSH)</term>
<term>Friedreich Ataxia (drug therapy)</term>
<term>Friedreich Ataxia (metabolism)</term>
<term>Friedreich Ataxia (pathology)</term>
<term>Humans (MeSH)</term>
<term>Iron-Binding Proteins (metabolism)</term>
<term>Isothiocyanates (pharmacology)</term>
<term>Molecular Targeted Therapy (MeSH)</term>
<term>NF-E2-Related Factor 2 (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Signal Transduction (drug effects)</term>
<term>Time Factors (MeSH)</term>
<term>Transcriptional Activation (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation de la transcription (effets des médicaments et des substances chimiques)</term>
<term>Acétylcystéine (pharmacologie)</term>
<term>Ataxie de Friedreich (anatomopathologie)</term>
<term>Ataxie de Friedreich (métabolisme)</term>
<term>Ataxie de Friedreich (traitement médicamenteux)</term>
<term>Biopsie (MeSH)</term>
<term>Facteur-2 apparenté à NF-E2 (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Isothiocyanates (pharmacologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de liaison au fer (métabolisme)</term>
<term>Régulation négative (effets des médicaments et des substances chimiques)</term>
<term>Thérapie moléculaire ciblée (MeSH)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Évaluation préclinique de médicament (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Iron-Binding Proteins</term>
<term>NF-E2-Related Factor 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Acetylcysteine</term>
<term>Isothiocyanates</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Ataxie de Friedreich</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Down-Regulation</term>
<term>Signal Transduction</term>
<term>Transcriptional Activation</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Friedreich Ataxia</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Activation de la transcription</term>
<term>Régulation négative</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Friedreich Ataxia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ataxie de Friedreich</term>
<term>Facteur-2 apparenté à NF-E2</term>
<term>Protéines de liaison au fer</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Friedreich Ataxia</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acétylcystéine</term>
<term>Isothiocyanates</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Ataxie de Friedreich</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biopsy</term>
<term>Drug Evaluation, Preclinical</term>
<term>Humans</term>
<term>Molecular Targeted Therapy</term>
<term>Oxidation-Reduction</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biopsie</term>
<term>Facteurs temps</term>
<term>Humains</term>
<term>Oxydoréduction</term>
<term>Thérapie moléculaire ciblée</term>
<term>Évaluation préclinique de médicament</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">NRF2 (Nuclear factor Erythroid 2-related Factor 2) signaling is impaired in Friedreich's Ataxia (FRDA), an autosomal recessive disease characterized by progressive nervous system damage and degeneration of nerve fibers in the spinal cord and peripheral nerves. The loss of frataxin in patients results in iron sulfur cluster deficiency and iron accumulation in the mitochondria, making FRDA a fatal and debilitating condition. There are no currently approved therapies for the treatment of FRDA and molecules able to activate NRF2 have the potential to induce clinical benefits in patients. In this study, we compared the efficacy of six redox-active drugs, some already adopted in clinical trials, targeting NRF2 activation and frataxin expression in fibroblasts obtained from skin biopsies of FRDA patients. All of these drugs consistently increased NRF2 expression, but differential profiles of NRF2 downstream genes were activated. The Sulforaphane and
<i>N</i>
-acetylcysteine were particularly effective on genes involved in preventing inflammation and maintaining glutathione homeostasis, the dimethyl fumarate, omaxevolone, and EPI-743 in counteracting toxic products accumulation, the idebenone in mitochondrial protection. This study may contribute to develop synergic therapies, based on a combination of treatment molecules.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31640150</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2019</Year>
<Month>Oct</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Targeting NRF2 for the Treatment of Friedreich's Ataxia: A Comparison among Drugs.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E5211</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms20205211</ELocationID>
<Abstract>
<AbstractText>NRF2 (Nuclear factor Erythroid 2-related Factor 2) signaling is impaired in Friedreich's Ataxia (FRDA), an autosomal recessive disease characterized by progressive nervous system damage and degeneration of nerve fibers in the spinal cord and peripheral nerves. The loss of frataxin in patients results in iron sulfur cluster deficiency and iron accumulation in the mitochondria, making FRDA a fatal and debilitating condition. There are no currently approved therapies for the treatment of FRDA and molecules able to activate NRF2 have the potential to induce clinical benefits in patients. In this study, we compared the efficacy of six redox-active drugs, some already adopted in clinical trials, targeting NRF2 activation and frataxin expression in fibroblasts obtained from skin biopsies of FRDA patients. All of these drugs consistently increased NRF2 expression, but differential profiles of NRF2 downstream genes were activated. The Sulforaphane and
<i>N</i>
-acetylcysteine were particularly effective on genes involved in preventing inflammation and maintaining glutathione homeostasis, the dimethyl fumarate, omaxevolone, and EPI-743 in counteracting toxic products accumulation, the idebenone in mitochondrial protection. This study may contribute to develop synergic therapies, based on a combination of treatment molecules.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Petrillo</LastName>
<ForeName>Sara</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. sara.petrillo@opbg.net.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>D'Amico</LastName>
<ForeName>Jessica</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. jessica.damico@opbg.net.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>La Rosa</LastName>
<ForeName>Piergiorgio</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. piergiorgio.larosa@opbg.net.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bertini</LastName>
<ForeName>Enrico Silvio</ForeName>
<Initials>ES</Initials>
<AffiliationInfo>
<Affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. enricosilvio.bertini@opbg.net.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Piemonte</LastName>
<ForeName>Fiorella</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy. fiorella.piemonte@opbg.net.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033862">Iron-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017879">Isothiocyanates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051267">NF-E2-Related Factor 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C495635">NFE2L2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C098527">frataxin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GA49J4310U</RegistryNumber>
<NameOfSubstance UI="C016766">sulforafan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>WYQ7N0BPYC</RegistryNumber>
<NameOfSubstance UI="D000111">Acetylcysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000111" MajorTopicYN="N">Acetylcysteine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001706" MajorTopicYN="N">Biopsy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004353" MajorTopicYN="N">Drug Evaluation, Preclinical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005621" MajorTopicYN="N">Friedreich Ataxia</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033862" MajorTopicYN="N">Iron-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017879" MajorTopicYN="N">Isothiocyanates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058990" MajorTopicYN="N">Molecular Targeted Therapy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051267" MajorTopicYN="N">NF-E2-Related Factor 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015533" MajorTopicYN="N">Transcriptional Activation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Friedreich’s Ataxia</Keyword>
<Keyword MajorTopicYN="N">Nrf2</Keyword>
<Keyword MajorTopicYN="N">frataxin</Keyword>
<Keyword MajorTopicYN="N">neurodegenerative disease</Keyword>
<Keyword MajorTopicYN="N">redox active drugs</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31640150</ArticleId>
<ArticleId IdType="pii">ijms20205211</ArticleId>
<ArticleId IdType="doi">10.3390/ijms20205211</ArticleId>
<ArticleId IdType="pmc">PMC6829337</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Pharmacol Rev. 2018 Apr;70(2):348-383</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29507103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2013 Aug;126 Suppl 1:125-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23859348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Des Devel Ther. 2018 Dec 04;12:4117-4127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30584276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Sci. 2011 Apr 15;303(1-2):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21315377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutrients. 2012 Oct 09;4(10):1399-440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23201762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2014 Apr 04;15(4):5789-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24714088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Jun 20;28(18):1603-1625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28817955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Jul 12;10(1):3081</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31300673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2019 Apr;18(4):295-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30610225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autoimmun Rev. 2018 Dec;17(12):1240-1250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30316988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2018 Aug;134:92-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29913224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Metab. 2018 May;124(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29526615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 May 17;10(1):2210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31101807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Mol Med. 2018 Aug;10(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29997171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2016 Aug 16;55(32):4519-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26894491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2016 Jul;139(Pt 7):e39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27095078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2017 Nov 1;27(13):989-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28443683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopreserv Biobank. 2016 Aug;14(4):324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27002638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2017 Aug 24;8:595</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28883796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2010 Mar;12(3):213-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20173742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Neurosci. 2019 Jul 31;13:356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31417369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2017 Mar 1;617:84-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27497696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Sep 1;13(5):651-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20156111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2016 Oct 1;25(19):4288-4301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27516386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Mar 28;14(3):e0214250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30921410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2011 Sep;134(Pt 9):2677-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21788663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(1):e4253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2001 Sep 1;10(18):1935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitochondrion. 2011 Mar;11(2):342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21147271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2017;2017:7612182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29435098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Top Curr Chem. 2013;329:163-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22752583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Pharmacother. 2019 Oct;20(15):1855-1867</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31311349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2016 May 26;7:e2237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27228352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol. 2009 Mar;256 Suppl 1:25-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19283347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2017 May 16;88(20):1942-1950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28424271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2015 Sep;99:344-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26141703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr Biochem. 2015 Jun;26(6):596-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25724107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Jun 3;14(6):e0217776</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31158268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Clin Transl Neurol. 2018 Nov 10;6(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30656180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 26;6(1):e16199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21298097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurol. 2018 Jan 23;9:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29410647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2018 Jul;153:159-167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29452096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2019 Apr;134:702-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30654017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurodegener Dis Manag. 2018 Aug;8(4):233-242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30051753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Neurosci. 2018 Jul 17;12:188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30065630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Med (Berl). 2019 Apr;97(4):463-472</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30820593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15091-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Metab. 2013 Jun;109(2):208-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23583222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2018 Dec 13;23(12):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30551603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3143-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22995213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2016 Jul 10;25(2):61-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27009601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2014 Jan;31(1):109-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24292194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Sep;8(9):1660-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23928499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2014 Apr;39(4):199-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24647116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 24;278(43):42588-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12915401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Oct 18;18(10):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29057804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Nov;1792(11):1052-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19679182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Apr 10;14(4):7853-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23574943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Food Sci. 2011 Sep;76(7):H175-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22417554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Neurother. 2017 Sep;17(9):895-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28724340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2019 Apr;40(4):229-233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30905359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2016 Nov 15;25(22):4847-4855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28175303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2018 May 1;141(5):1390-1403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29538645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2014 Dec 20;23(25):6848-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25113747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2018 Oct;285(19):3576-3590</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29323772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Ther. 2018 Oct;35(10):1510-1518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30173326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2017 Dec;187(12):2858-2875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28935570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Nov 1;19(13):1481-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23350650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Metab. 2017 Nov;122(3):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28943110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2015 Aug;43(4):611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26551701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2017 Jul 15;26(14):2781-2790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28472288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Clin Chem. 2018;87:141-159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30342710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Metab. 2012 Nov;107(3):383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23010433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Med. 2017 May 03;6(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28467362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Apr 10;20(11):1723-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24180287</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
<region>
<li>Latium</li>
</region>
<settlement>
<li>Rome</li>
</settlement>
</list>
<tree>
<country name="Italie">
<region name="Latium">
<name sortKey="Petrillo, Sara" sort="Petrillo, Sara" uniqKey="Petrillo S" first="Sara" last="Petrillo">Sara Petrillo</name>
</region>
<name sortKey="Bertini, Enrico Silvio" sort="Bertini, Enrico Silvio" uniqKey="Bertini E" first="Enrico Silvio" last="Bertini">Enrico Silvio Bertini</name>
<name sortKey="D Amico, Jessica" sort="D Amico, Jessica" uniqKey="D Amico J" first="Jessica" last="D'Amico">Jessica D'Amico</name>
<name sortKey="La Rosa, Piergiorgio" sort="La Rosa, Piergiorgio" uniqKey="La Rosa P" first="Piergiorgio" last="La Rosa">Piergiorgio La Rosa</name>
<name sortKey="Piemonte, Fiorella" sort="Piemonte, Fiorella" uniqKey="Piemonte F" first="Fiorella" last="Piemonte">Fiorella Piemonte</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000201 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000201 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31640150
   |texte=   Targeting NRF2 for the Treatment of Friedreich's Ataxia: A Comparison among Drugs.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31640150" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020